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Argonne National Laboratory

Theory Group

7 Staff

5 Postdocs

7 Special Term Appointees

Our research addresses the five key
questions that comprise the USA’s
nuclear physics agenda. We place
heavy emphasis on the prediction of
phenomena accessible at Argonne’s
ATLAS facility, at JLab, and at other
laboratories around the world; and
on anticipating and planning for
FRIB.

Our research explores problems in: theoretical and computational nuclear astrophysics;
quantum chromodynamics and hadron physics; light-hadron reaction theory; ab-initio
many-body calculations based on realistic two- and three-nucleon potentials; and
coupled-channels calculations of heavy-ion reactions. Our programs provide much of the
scientific basis for the drive to physics with rare isotopes. Additional research in the
Group focuses on: atomic and neutron physics; fundamental quantum mechanics;
quantum computing; and tests of fundamental symmetries and theories unifying all the
forces of nature, and the search for a spatial or temporal variation in Nature’s basic
parameters. The pioneering development and use of massively parallel numerical
simulations using hardware at Argonne and elsewhere is a major component of the
Group’s research.
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Hadron Physics

Molecular Physics
Scale = nm

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 4/49



First Contents Back Conclusion

Hadron Physics

Atomic Physics
Scale = Å
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Nuclear Physics
Scale = 10 fm
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Hadron Physics

Meta-Physics
Scale = Limited only

by Theorists
Imagination
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Nucleon . . . 2 Key Hadrons
= Proton and Neutron

Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

Dirac (1928) – pointlike fermion: µp =
e~

2M

Stern (1933) – µp = (1 + 1.79)
e~

2M

Big Hint that Proton is not a point particle

Proton has constituents

These are Quarks and Gluons

Quark discovery via e− p-scattering at SLAC in 1968

– the elementary quanta of Quantum Chromo-dynamics
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JLab

Thomas Jefferson National Accelerator Facility

World’s Premier Hadron Physics Facility

Design goal (4 GeV) experiments began in 1995

Electrons accelerated by

repeated journeys along linacs

Once desired energy is

reached, Beam is directed into

Experimental Halls A, B and C

Current Peak

Electron Beam Energy

Nearly 6 GeV
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JLab Hall-A

Measured Ratio of

Proton’s Electric and Magnetic Form Factors
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JLab Hall-A
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Walker et al., Phys.
Rev. D 49, 5671
(1994). (SLAC)

Jones et al., JLab Hall
A Collaboration, Phys.
Rev. Lett. 84, 1398
(2000)

Gayou, et al., Phys.
Rev. C 64, 038202
(2001)

Gayou, et al., JLab Hall
A Collaboration, Phys.
Rev. Lett. 88 092301
(2002)
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If JLab Correct, then

Completely

Unexpected Result:

In the Proton

– On Relativistic

Domain

– Distribution of

Quark-Charge

Not Equal

Distribution of

Quark-Current!
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

In a letter dated 17 July, 2006 , the
Department of Energy’s (DOE)
Office of Science for Nuclear
Physics and the National Science
Foundation’s (NSF) Mathematical
and Physical Sciences Directorate
charged the Nuclear Science
Advisory Committee (NSAC) to
“conduct a study of the opportunities
and priorities for U.S. nuclear
physics research and recommend a
long range plan that will provide a
framework for coordinated
advancement of the nation’s nuclear
science research programs over the
next decade.”

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 8/49



First Contents Back Conclusion

Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

2. Construction of the Facility for Rare Isotope Beams (FRIB), a world-leading facility
for the study of nuclear structure, reactions, and astrophysics. NB. On 20 May,
2008, the Department of Energy released a Funding Opportunity Announcement
regarding the submission of applications for the conceptual design and
establishment of a Facility for Rare Isotope Beams (FRIB). Proposals are due by
21 July, 2008.
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Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

3. A targeted program of experiments to investigate neutrino properties and
fundamental symmetries.
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Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC II luminosity upgrade, together with detector
improvements.

These recommendations were followed by Initiatives. Leading the list was a statement
on Theory: “We recommend the funding of finite-duration, multi-institutional topical
collaborations initiated through a competitive, peer-review process. [. . . ] These initiatives
are intended to bring together the best in the field, leverage resources of smaller
research groups, and provide expanded opportunities for the next generation of nuclear
theorists.”

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 9/49



First Contents Back Conclusion

Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC II luminosity upgrade, together with detector
improvements.

These recommendations were followed by Initiatives. Leading the list was a statement
on Theory: “We recommend the funding of finite-duration, multi-institutional topical
collaborations initiated through a competitive, peer-review process. [. . . ] These initiatives
are intended to bring together the best in the field, leverage resources of smaller
research groups, and provide expanded opportunities for the next generation of nuclear
theorists.”
It was followed by a statement on accelerator R&D, which urged: “targeted support of
proposal-driven accelerator Research and development supported by DOE and NSF
nuclear physics.”

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 9/49



First Contents Back Conclusion

Frontiers of Nuclear Science:
A Long Range Plan (2007)

Primary Recommendations

1. Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.

4. Implementation of the RHIC II luminosity upgrade, together with detector
improvements.

These recommendations were followed by Initiatives. Leading the list was a statement
on Theory: “We recommend the funding of finite-duration, multi-institutional topical
collaborations initiated through a competitive, peer-review process. [. . . ] These initiatives
are intended to bring together the best in the field, leverage resources of smaller
research groups, and provide expanded opportunities for the next generation of nuclear
theorists.”
It was followed by a statement on accelerator R&D, which urged: “targeted support of
proposal-driven accelerator Research and development supported by DOE and NSF
nuclear physics.”

Complete report: http://www.sc.doe.gov/np/nsac/nsac.html

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 9/49



First Contents Back Conclusion

What is QCD?

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 10/49



First Contents Back Conclusion

What is QCD?

Gauge Theory:

Interactions Mediated by massless vector bosons

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 10/49



First Contents Back Conclusion

What is QCD?

Gauge Theory:

Interactions Mediated by massless vector bosons

Similar interaction in QED

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 10/49



First Contents Back Conclusion

What is QCD?

Gauge Theory:

Interactions Mediated by massless vector bosons

Similar interaction in QED

Special Feature of QCD – gluon self-interactions

Completely Change the Character of the Theory
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Add three-gluon interaction
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2004 Nobel Prize in Physics: Gross, Politzer and Wilczek
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Quarks and Nuclear Physics

Real World

Normal Matter . . .

Only Two Light

Flavours Active

or, perhaps, three

For numerous

good reasons,

much research

also focuses on

accessible

heavy-quarks

Nevertheless, I

will focus

primarily on the

light-quarks.
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Nucleon’s relativistic electromagnetic current:

Jµ(P ′, P ) = ie ūp(P
′) Λµ(Q,P ) up(P ) , Q = P ′ − P

= ie ūp(P
′)

(

γµF1(Q
2) +

1

2M
σµν Qν F2(Q

2)

)

up(P )

GE(Q2) = F1(Q
2)−

Q2

4M2
F2(Q

2) , GM (Q2) = F1(Q
2)+F2(Q

2) .

Point-particle: F2 ≡ 0 ⇒ GE ≡ GM
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Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics – they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.

Despite this, many urgent questions remain unanswered.
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A central goal of nuclear physics is to understand the structure

and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD

So, what’s the problem?

Confinement

– No quark ever seen in isolation

Weightlessness

– 2004 Nobel Prize in Physics:

Mass of u− & d−quarks,

each just 5 MeV;

Proton Mass is 940 MeV

⇒ No Explanation Apparent

for 98.4 % of Mass Craig Roberts: Modern Hadron Physics
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Meson Spectrum

140 MeV

770
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Gauge Theories with Massless Fermions have
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Chiral Symmetry

Helicity λ ∝ J · p

Projection of Spin onto Direction of Motion

For massless particles, helicity is a Lorentz
invariant Spin Observable.

λ = ± (‖ or anti-‖ to pµ)
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Chiral Symmetry

Chirality Operator: γ5

Chiral Transformation q(x) → eiγ5θ q(x)

Chiral Rotation θ =
π

2
qλ=+ → qλ=+, qλ=− → − qλ=−

Hence, a theory invariant under chiral
transformations can only contain interactions that
are insensitive to a particle’s helicity.
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Chiral Symmetry

Chirality Operator: γ5

Chiral Transformation q(x) → eiγ5θ q(x)

Chiral Rotation θ =
π

4
Composite Particles: JP= + ↔ JP=−

Equivalent to “Parity Conjugation” Operation
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A Prediction of Chiral Symmetry

Degeneracy between Parity Partners
N( 1

2

+
, 938) = N( 1

2

−

, 1535),
π(0−, 140) = σ(0+, 600),

ρ(1−, 770) = a1(1
+, 1260)

Doesn’t Look too good
Predictions not Valid – Violations too Large.

Appears to suggest quarks are Very Heavy
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Degeneracy between Parity Partners
N( 1

2

+
, 938) = N( 1

2

−

, 1535),
π(0−, 140) = σ(0+, 600),

ρ(1−, 770) = a1(1
+, 1260)

Doesn’t Look too good
Predictions not Valid – Violations too Large.

Appears to suggest quarks are Very Heavy

How can pion mass be so small
If quarks are so heavy?!
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Chiral Symmetry

Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Chiral Transformation

S0(p) → eiγ5θS0(p)eiγ5θ

=
−iγ · p

p2 + m2
+ e2iγ5θ m

p2 + m2

Symmetry Violation ∝m

m = 0: S0(p) → S0(p)
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Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Quark Condensate

〈q̄q〉µ ≡
∫ Λ

µ

d4p

(2π)4
tr [S(p)] ∝

∫ Λ

µ

d4p

(2π)4
m
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Chiral Symmetry

Can be discussed in terms of Quark Propagator

Free Quark Propagator S0(p) =
−iγ · p + m

p2 + m2

Quark Condensate

〈q̄q〉µ ≡
∫ Λ

µ

d4p

(2π)4
tr [S(p)] ∝

∫ Λ

µ

d4p

(2π)4
m

p2 + m2

A Measure of the Chiral Symmetry Violating Term

Perturbative QCD: Vanishes if m = 0
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proton = three constituent quarks

Mproton ≈ 1 GeV

guess Mconstituent−quark ≈ 1 GeV

3
≈ 350 MeV

pion =

constituent quark + constituent antiquark

guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

Another meson:

. . . . . . . . . . . Mρ = 770 MeV . . . . . . . . . . . No Surprises Here
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Modern Miracles
in Hadron Physics

proton = three constituent quarks

Mproton ≈ 1 GeV

guess Mconstituent−quark ≈ 1 GeV

3
≈ 350 MeV

pion =

constituent quark + constituent antiquark

guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

What is “wrong” with the pion?
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Must exhibit m2
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The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.
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Dichotomy of Pion
– Goldstone Mode and Bound state

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2

π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.

Highly Nontrivial
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Relativistic QFT!
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detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included
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What’s the Problem?
Relativistic QFT!

Minimal requirements

detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included

Interaction between quarks – the Interquark “Potential” –

unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction?
What is the

98% of the volume

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.
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QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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Why should
You care?

Absent DCSB: mπ = mρ ⇒ repulsive and attractive
forces in nucleon-nucleon interaction both have SAME
range and there is No intermediate range attraction!
Under these circumstances,

What is the range:
1

2 mq
∼ 20 fm or

1

2 MQ
∼ 1

3
fm?

Is 12C stable?

Probably not, if range range ∼ 1

2 MQ
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How does the binding energy of deuterium
change?
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Why should
You care?

Absent DCSB: mπ = mρ ⇒ repulsive and attractive
forces in nucleon-nucleon interaction both have SAME
range and there is No intermediate range attraction!
Under these circumstances,

How does the binding energy of deuterium
change?
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range and there is No intermediate range attraction!
Under these circumstances,

How does the binding energy of deuterium
change?

How does the neutron lifetime change?
How does mu − md relate to MU − MD?
Can one guarantee Mn > Mp?

Is a unique long-range interaction between
light-quarks responsible for all this or are there
an uncountable infinity of qualitatively equivalent
interactions?
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Plainly, nonperturbative method is necessary.

However, is there an answer to the question?

Possible to obtain or even sensible to ask for a quantum

mechanical description of light-quark systems in a

relativistic quantum gauge field theory, wherein virtual

particles play an essential role?

No, it’s not. True understanding of the meson spectrum and

decays requires the ab initio nonperturbative solution of a

fully-fledged relativistic quantum field theory

NB. Hadron Physics Milestone, 2012: Measure the

electromagnetic excitations of low-lying hadrons and their

transition form factors.
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Confinement

Infinitely Heavy Quarks . . . Picture in Quantum Mechanics

integration of the force-3 loops

bosonic string

V (r) = σ r − π

12

1

r

σ ∼ 470 MeV

Necco & Sommer

he-la/0108008
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Illustrate this in terms of the action density . . . analogous to

plotting the Force = FQ̄Q(r) = σ +
π

12

1

r2

Bali, et al.

he-la/0512018
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What happens in the real world; namely, in the presence of

light-quarks? No one knows . . . but Q̄Q + 2 × q̄q

Bali, et al.

he-la/0512018

“The breaking of the string appears to be an instantaneous

process, with de-localized light quark pair creation.”

Therefore . . . No

information on potential

between light-quarks.
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1994 . . . “As computer technology continues to improve,

lattice gauge theory [LGT] will become an increasingly

useful means of studying hadronic physics through

investigations of discretised quantum chromodynamics

[QCD]. . . . .”
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1994 . . . “However, it is equally important to develop other

complementary nonperturbative methods based on

continuum descriptions. In particular, with the advent of new

accelerators such as CEBAF and RHIC, there is a need for

the development of approximation techniques and models

which bridge the gap between short-distance, perturbative

QCD and the extensive amount of low- and

intermediate-energy phenomenology in a single covariant

framework. . . . ”

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 30/49



First Contents Back Conclusion

A Compromise?
Dyson-Schwinger Equations

1994 . . . “Cross-fertilisation between LGT studies and

continuum techniques provides a particularly useful means

of developing a detailed understanding of nonperturbative

QCD.”

Craig Roberts: Modern Hadron Physics

Zhongshan Forum, 22-30 June 08. . . 49 – p. 30/49



First Contents Back Conclusion

A Compromise?
Dyson-Schwinger Equations
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continuum techniques provides a particularly useful means

of developing a detailed understanding of nonperturbative

QCD.”

C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations

and their application to hadronic physics,” Prog. Part. Nucl. Phys.

33, 477 (1994) [arXiv:hep-ph/9403224].
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system of coupled integral equations relating the Green

functions for the theory to each other.
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Dyson (1949) & Schwinger (1951) . . . One can derive a

system of coupled integral equations relating the Green

functions for the theory to each other.

Σ
=

D

γ
ΓS

These are nonperturbative equivalents in quantum field

theory to the Lagrange equations of motion.

Essential in simplifying the general proof of renormalisability

of gauge field theories.
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Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
2)
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Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Method yields Schwinger Functions ≡ Propagators
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Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

. . . . . . . . . . . . . . . . . . . . Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons

Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions
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D
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Persistent Challenge

Infinitely Many Coupled Equations

Σ
=

D

γ
ΓS

Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Persistent Challenge

Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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iγ · p + M(p2)
Σ

=
D

γ
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Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0
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S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) + B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0

No DCSB
Here!
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Dressed-Quark Propagator

S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
Gap Equation’s Kernel Enhanced on IR domain

⇒ IR Enhancement of M(p2)
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Euclidean Constituent–Quark

Mass: ME
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Euclidean Constituent–Quark

Mass: ME
f : p2 = M(p2)2

flavour u/d s c b
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mζ
∼ 102

∼ 10 ∼ 1.5 ∼ 1.1

Predictions confirmed in
numerical simulations of lattice-QCD
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C. D. Roberts and

A. G. Williams,
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Propagator

Longstanding Prediction of

Dyson-Schwinger Equation

Studies

E.g., Dyson-Schwinger

equations and their

application to hadronic

physics,
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ME
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=
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Obvious: ratio vanishes for

light-quarks because

magnitude of their

constituent-mass owes
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other hand, for heavy-quarks
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−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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• Pseudovector projection of BS wave function at x = 0
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, Independent of mq

Hence m2
H =
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mq . . . GMOR relation, a corollary

Heavy-quark + light-quark
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√
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mH
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fH m2
H = − ρH
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Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)
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Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)Craig Roberts: Modern Hadron Physics
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The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons. Craig Roberts: Modern Hadron Physics
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Next lecture:

Elastic electromagnetic pion form factor

Deep Inelastic Scattering – discovery of quarks

Nature of Baryons

Hadron Physics just after the Big Bang
– nonzero temperature and chemical potentialCraig Roberts: Modern Hadron Physics
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